

Mechanical & Industrial Engineering UNIVERSITY OF TORONTO

Deep Co-design: Streamlining the Electro-Thermal Design Process for Future Automation

Meagan Flus¹, Omri Tayyara², Pranav Khanolkar¹, Ademir Vrolijk¹, Carlos Da Silva², Cristina Amon², Alison Olechowski¹ ¹Ready Lab, ²Advanced Thermofluids Optimization, Modelling, and Simulation (ATOMS) Laboratory

INTRODUCTION

- Design teams are increasingly facing complex problems necessitating highly-integrated and interdisciplinary collaboration
- Example: thermal solutions for power electronics needed to meet the demand for electric vehicles (EVs) and consumer electronics
- Electro-thermal practitioners have employed a "co-design" approach [1]
- Traditional co-design falls short of the ideals of simultaneous collaboration and rich communication between disciplines

OBJECTIVE

Draw on collaboration principles from design and systems engineering to propose a new concurrent design framework:

"Deep Co-design"

	Traditional Co-design	Deep Co-design					
n	Collaboration happens sequentially [2]	Collaboration happens simultaneously					
Nature of Collaboratio	 Infrequent sharing of domain information Sequential optimization of sub-systems Freezing of design architecture of one domain to inform the other 	 Frequent sharing of domain information Concurrent optimization of sub-systems Co-development of design architectures 					
(0	Low fidality models						
els	Low indenty models	High fidelity models					

RESULTS

Traditional Co-design

a		80	1	2	3	4	5	6	7	8	9	10
Electrical	Electrical specifications determined	1										
	Analytical calculations of electrical system	2	•		•	•	•			×		
	Simplified electrical models to determined system losses	3		•		•	•					
	Designing of printed circuit board (PCB)	4	Ì		•		•					
	Determine distribution of components on the PCB	5				•		•				
Thermal	Select appropriate thermal management system	6					•					Ĩ
	Generate CAD of system architecture	7						•		•	•	•
	Import CAD into Spaceclaim, design modeler, or COMSOL	8							•		•	•
	Generate computational fluid dynamics (CFD) ready CAD	9								•		•
	Import electrical CAD into thermal model	10									•	
	Multi-physics simulation setup	11										•
	Solve simulation	12										
	Post process and evalulate results	13										
Build	Fabricate system and test	14									3 3	

Deep Co-design

_			1	2	3	4	5	6	7	8	9	10	11	12
al	Electrical specifications with consultation	1												
	Construct numerical model of electrical system and assess preliminary results	2	•		×				×			×		×
E	Designing of printed circuit board (PCB)	З	•	•					×			×		×
the	Design thermal management system	4	•	•	•				×			×		×
-o-	Generate optimized thermal design in 2D	5	•	•	•	•			×			×		×
ecti	Generate CAD of system architecture in 3D	6					•		×			×		×
Ele	Conduct 3D high-fidelity simulation of thermal design and assess results of simulation	7						•				×		×
ted	Incorporate high-fidelity thermal model into electrical model	8							•			×		×
grat	Solve electro-thermal simulation until the desired design criterion is met	9								•		×		×
Integ	Post process and evalulate results	10									•			×
	Parallel electrical and thermal system build	11										•		×
	Test system, validate simulations	12											•	

REFERENCES

- [1] Steen, M., Manschot, M., and De Koning, N., 2011, "Benefits of co-design in service design projects," International Journal of Design, 5(2).
- [2] Routley, N., 2017, "Visualizing the trillion-fold increase in computing power," Visual Capitalist, 3.
- [3] Harrison, T., Chen, J., and Murugan, R., 2019, "System co-design of a high current (40a) synchronous step-down converter in an innovative multi-chip module (mcm) lqfn-type packaging technology," In 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), IEEE, pp. 1653–1659.
- [4] Amon, C. H., Egan, E. R., Smailagic, A., and Siewiorek, D. P., 1997, "Thermal management and concurrent system design of a wearable multicomputer," IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 20(2), pp. 128–137.

11 12 13 14 x x x x x > x > X 1 • •

FUTURE AUTOMATION

Categorize the integrated (electro-thermal) design tasks into the five design stages

Identify the role/contribution of designers and computational supports in each category

Select, develop and implement apt automation method to further reduce time-to-develop at the category/task-level

ACKNOWLEDGEMENTS

This work was supported by the University of Toronto Electrification Hub, the Natural Sciences and Engineering Research Council of Canada through the TherMET training program.