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Battery Thermal Management Systems

Case Study: Pin-Fin Cold Plates

Numerical models for module‐level battery thermal management systems with
bottom‐cooling pin‐fin cold plates, as those commercially available in electric ve‐
hicles manufactured by Ford, Rivian, and Lucid Motors.

Ford Mach‐E System:
Battery Pack:

Cold Plate:

Computational Domain Representation

Design Optimization Formulation

Constraints, design variables, and objectives for the novel design optimization of
pin‐fin cold plate flow paths (Ebbs‐Picken et al., J. Energy Storage, 67:107460, 2023).

minimize ∆P, Vc, Tmax, Tσ

with respect to xi, yi, ri ∈ IRn

subject to c1 : xi, yi ∈ dom(plate) | c2 : rmin < r < rmax

c3 :
√

(xi − xj)2 + (yi − yj)2 ≤ 1.025 · (ri + rj) ∀ i ̸= j

(1)

Surrogate Modeling Framework

Dense encoder‐decoder neural network surrogate models to predict the objectives
from the design variables following the process below:

1 Generate Samples
Generated design samples using Latin‐Hypercube Sampling from the design variables and
constraints:

Sample 2Sample 1 Sample n

…

2 Compute Results
Computed the conjugate heat transfer results from the numerical models for each sample
point:

P (x, y)v(x, y) T (x, y, t)

3 Process Mesh Results
Structured the mesh results of each sample to develop a training database for neural networks:

Q(cstruct) =

∑n
j=0 A(cjunstruct) · Q(cjunstruct)

∑n
j=0 A(cjunstruct)

∀cunstruct ∈ dom(cstruct)

4 Train Dense Encoder‐Decoder Neural Networks
Trained neural networks to predict each field based on the architecture below:
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Preliminary Results

Surrogate model outputs demonstrate accurate prediction capabilities:
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R2 = 0.68
RMSE = 0.49 K

R2 = 0.92
RMSE = 0.009 m/s

R2 = 0.82
RMSE = 6.31 Pa

Conclusions and Future Works

Conclusions:

This generalized framework is applicable across battery thermal management
system levels and can be used to accelerate electric vehicle development
through design optimization.
Encoder‐decoder neural networks are efficient and accurate surrogate models
for cold plate conjugate heat transfer problems.

Future works:

Use the surrogate models to optimize cold plate flow paths.
Apply the general optimization framework to other systems including:
stationary energy storage and vehicle level thermal management systems.
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