Hierarchical multiscale modeling framework and 3D thermo-electrochemical coupled model for Li-ion battery thermal management systems

Mechanical & Industrial Engineering UNIVERSITY OF TORONTO

Oscar A. Alvarez^{*}, Amador M. Guzman, Carlos M. Da Silva , Cristina H. Amon Department of Mechanical and Industrial Engineering, University of Toronto Advanced Thermofluids Optimization, Modelling, and Simulations (ATOMS) Laboratory *oscar.alvarez@mail.utoronto.ca

Objectives

- Predict Cell's and Modules' effective thermohysical properties
- > Develop a 3D thermo-electrochemical coupled model for cell's thermal performance
- Perform parametric sweep analyses for optimal design at cell level

Cell thermal characterization

Effective thermophysical properties predicted from a representative number of sub-cell units

/(mK))

Module thermal characterization Effective thermophysical properties predicted from a representative number of sub-module units Conservation of Energy applied to a battery cel domain: Cell is fully exposed to a convective environment Foam Plastic case Case study: module of pouch cells, fins, foam, and plastic case Surface temperature: experimental and numerica T3_exp △ T4_exp (a) Isometric view of case study; (b) cross-section view of temperature T6_exp gradients: top, original work; bottom, current methodology – T1_simul – T3_simul – T4_simul **Conclusions and next steps** – T6_smul Effective thermophysical properties can represent cells and modules as homogeneous domains with anisotropic heat transport Heat generation rates are highly time and spatially dependent in large format pouch batteries - Next steps involve proposition of battery thermal management Volumetric heat generation rates vs. Cathode's particle radius systems and thermal performance metrics $r_{p}^{+} = 11 \, \mu m$ 90,000 80,000 (mK) $r_{p}^{+} = 5 \, \mu m$ (W/m^3) 70,000 Acknowledgements 60,000 $r_p^+ = 1 \, \mu m$ Q^mge

Parametric sweep analysis for cell's thermal performance Anisotropic thermal conductivities vs. Cathode's thickness

Cathode thickness (µm)

of Toronto the University supported by This work was Electrification Hub, the Natural Sciences and Engineering of Canada (NSERC) through the CREATE **Research** Council TherMET Training Program, Flex-N-Gate, Mitacs Accelerate Program, and CMC Microsystems.

