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- Effective thermophysical properties can represent cells and 

modules as homogeneous domains with anisotropic heat transport

- Heat generation rates are highly time and spatially dependent in 

large format pouch batteries

- Next steps involve proposition of battery thermal management 

systems and thermal performance metrics

 Effective thermophysical properties predicted from a 

representative number of sub-cell units

Cell

Pack

Sub-cell

Hierarchical Multiscale 

Thermal Modeling for 

Lithium-ion Battery 

Systems

Parametric sweep analysis for cell’s thermal performance

Experimental tests at the Thermal Management Systems (TMS) Lab

Volumetric heat generation rates and temperature field hierarchically transferred between domains

Surface temperature: experimental and numerical
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Electrochemical kinetics: 

P2D model applied to a 

sub-cell 3D domain

- Conservation of charge

- Conservation of mass

Conservation of Energy 

applied to a battery cell 

domain:

Cell is fully exposed to a 

convective environment
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 Effective thermophysical properties predicted through an 

Experimental-Numerical Inverse Heat Transfer model

Conclusions and next steps

 Effective thermophysical properties predicted from a 

representative number of sub-module units

Case study: module of pouch cells, fins, foam, and plastic case

(a) Isometric view of case study; (b) cross-section view of temperature 

gradients: top, original work; bottom, current methodology

Volumetric heat generation rates vs. Cathode’s particle radius

Vehicle

 Predict Cell’s and Modules’ effective thermohysical properties

 Develop a 3D thermo-electrochemical coupled model for cell’s

thermal performance

 Perform parametric sweep analyses for optimal design at cell level
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Anisotropic thermal conductivities vs. Cathode’s thickness
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